HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53.
نویسندگان
چکیده
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21. Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53-p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.
منابع مشابه
BAT3 Regulates Mycobacterium tuberculosis Protein ESAT-6-Mediated Apoptosis of Macrophages
HLA-B-associated transcript 3 (BAT3), also known as Scythe or BAG6, is a nuclear protein implicated in the control of apoptosis and natural killer (NK) cell-dendritic cell (DC) interaction. We demonstrate that BAT3 modulates the immune response by regulating the function of macrophages. BAT3 is released by macrophages in vitro and it down-regulates nitric oxide and proinflammatory cytokines rel...
متن کاملBCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy.
B cell lymphoma 6 (BCL6), which encodes a transcriptional repressor, is a critical oncogene in diffuse large B cell lymphomas (DLBCLs). Although a retro-inverted BCL6 peptide inhibitor (RI-BPI) was recently shown to potently kill DLBCL cells, the underlying mechanisms remain unclear. Here, we show that RI-BPI induces a particular gene expression signature in human DLBCL cell lines that included...
متن کاملMDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation.
Our previous study shows that MDM2, a negative feedback regulator of the tumor suppressor p53, inhibits p300-mediated p53 acetylation. Because PCAF (p300/CREB-binding protein-associated factor) also acetylates and activates p53 after DNA damage, in this study we have examined the effect of MDM2 on PCAF-mediated p53 acetylation. We have found that MDM2 inhibited p53 acetylation by PCAF in vitro....
متن کاملDendritic Cells Release HLA-B-Associated Transcript-3 Positive Exosomes to Regulate Natural Killer Function
NKp30, a natural cytotoxicity receptor expressed on NK cells is critically involved in direct cytotoxicity against various tumor cells and directs both maturation and selective killing of dendritic cells. Recently the intracellular protein BAT3, which is involved in DNA damage induced apoptosis, was identified as a ligand for NKp30. However, the mechanisms underlying the exposure of the intrace...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2007